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Abstract

We set out a modal logic for reasoning about multilevel security of probabilistic systems. This

logic contains expressions for time, probability, and knowledge. Making use of the Halpern-

Tuttle framework for reasoning about knowledge and probability, we give a semantics for our

logic and prove it is sound. We give two syntactic de�nitions of perfect multilevel security and

show that their semantic interpretations are equivalent to earlier, independently motivated

characterizations. We also discuss the relation between these characterizations of security

and between their usefulness in security analysis.
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Figure 1: The General Form of a System

1 Introduction

Multilevel security is the aspect of computer security concerned with protecting information

that is classi�ed with respect to a multilevel hierarchy (e.g., UNCLASSIFIED, SECRET,

TOP SECRET). A probabilistic system is a hardware or software system that makes proba-

bilistic choices (e.g., by consulting a random number generator) during its execution. Such

probabilistic choices are useful in a multilevel security context for introducing noise to reduce

the rate of (or eliminate) illicit communication between processes at di�erent classi�cation

levels. In this paper, we are concerned with de�nitions of perfect (information-theoretic)

multilevel security in the sense that the de�nitions rule out all illicit communication without

relying on any complexity-theoretic assumptions. That is, our model allows the system pen-

etrators to have unlimited computational power; yet, our de�nitions are su�cient to ensure

there can be no illicit communication.

The systems we address can be depicted in the form shown in Figure 1. This general form

is intended to represent systems including physical hardware with hard-wired connections

to other systems, an operating system kernel with connections to other processes provided

by shared memory, and processes executing on a multiprocessor with connections to other

systems provided by an interprocess communication (IPC) mechanism.

� There is a system, called �, that provides services to the other systems. For example,

in the case of a multiuser relational database, � would store and control access to a set

of relations. � is the system with respect to which we will be reasoning about multilevel

security.

� There is a set of systems (labeled S1, S2; : : :, Si in the �gure), called the \covert senders",

that have access to secret information. These systems are called \covert senders" because
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they may attempt to covertly send secret information, via �, to other systems that are not

authorized to see the information. It is these attempts with which we are concerned. As is

commonly done in the literature, we will often refer to the covert senders as high systems

(referring to the situation where the covert senders have access to highly classi�ed informa-

tion). We will also refer to the set of covert senders collectively as the high environment ,

denoted H. These systems are part of \the environment" in the sense that they are in the

environment of the central system, �.

� There is a second set of systems (labeled R1, R2; : : :, Rj in the �gure), called the \covert

receivers", that are not authorized to see the secret information that is available to the covert

senders. We will often refer to the covert receivers as low systems, or collectively as the low

environment , denoted L.

If the covert senders are able to use � to communicate information to the covert receivers,

we will say that � has a covert channel, or equivalently, for our purposes, that � is insecure.

A few notes are in order.

1. It is important to bear in mind that the threat that we are concerned with is not that

the users (i.e., the human users) of the covert sender systems are attempting to send

secret information to the covert receivers. We assume that if they wanted to, they could

more easily pass notes in the park and entirely bypass �. Rather, we are concerned that

the covert senders are actually trojan horses (i.e., they appear to be something that the

user wants, but actually contain something else that is entirely undesirable to the user)

and that these trojan horses are attempting to send secret information to the covert

receivers. This is a legitimate concern since system developers do not want to incur the

cost of verifying every component of a conglomerate system with respect to multilevel

security requirements. Ideally, only a small number of components in the system (e.g.,

in our case only �) have security requirements and thereby require veri�cation; while

the remaining components can be implemented by o�-the-shelf hardware and software

that are unveri�ed with respect to security (and therefore may be trojan horses).

We assume a worst case scenario, where all of the covert senders and covert receivers

are trojan horses. Indeed, we assume that all of the trojan horses are cooperating in

an attempt to transmit information from the covert senders to the covert receivers.

2. It is also important to bear in mind that in our intended application, the covert senders
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will not be able to communicate directly to the covert receivers (i.e., by bypassing �).

Typically, there are software, hardware or other physical controls to prevent this. For

example, non-bypassability is one of the well-known principles of a \reference monitor"

(see [13]), which is one of the typical applications we have in mind.

3. Our model contrasts sharply with much other work on security (e.g., [31], [11]) in

that we consider a set of untrusted agents (viz, the covert senders and receivers) that

are connected via a trusted agent, whereas these other works consider a set of trusted

agents connected via an untrusted agent. This di�erence in our model reects the

di�erence in the respective applications. The work of Meadows in [31] and Dolev et

al. in [11] is intended for the analysis of a set of legitimate (and trusted) agents that

are attempting to establish secure communication over an untrusted network. In that

work, the assumption is that the penetrator is able to subvert the network (i.e., the

central component of the system), but not the trusted (lateral) agents.

In contrast, our work is intended to be used to analyze a centralized server that serves

a set of untrusted entities. Correspondingly, our assumption is that the penetrator

may be able to subvert the untrusted (lateral) agents, but not the central server.

4. The fact that we have partitioned the set of systems external to � into two sets,

high and low, may seem to indicate that we are limiting ourselves to two levels of

information (e.g., SECRET and UNCLASSIFIED). However, this is not the case. In

a more general setting, information is classi�ed (users are cleared, resp.) according to

a �nite, partially ordered set (see, e.g., Denning's [9]); that is, there is a �nite set of

classi�cation levels (clearance levels, resp.) that is ordered by a reexive, transitive,

and anti-symmetric relation, which we call dominates. (In fact this set forms a �nite

lattice.) A given user is permitted to observe a given piece of information only if the

user's clearance dominates the classi�cation of the information. In the case where there

are more than two levels, a separate analysis would be performed for each level, x; in

each analysis, the set of levels would be partitioned into those that are dominated by

x (i.e., the \low" partition) and the set of levels that are not dominated by x (i.e., the

\high" partition). Thus, we have lost no generality by restricting our attention to two

levels.

The motivation for reasoning about the probabilistic behavior of systems has appeared in
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examples and discussions of many authors (cf. [4, 17, 26, 28, 30, 42]). Essentially, the

motivation is that it is possible for a probabilistic system to satisfy many existing de�nitions

of security (e.g., Sutherland's Nondeducibility [40], McCullough's Restrictiveness [29], etc.)

and still contain probabilistic covert channels.

Our long term goal is to develop a logic that can be used to reason about the multilevel

security of a given system �. The logical de�nition of security in this paper delineates ideal

security for probabilistic systems. As such it does not apply to real systems, which are too

complex to be simultaneously ideally secure and adequately functional. Nonetheless, it is

important to establish the ideal in order to know what is possible. Further, we view the

present work as a step in the direction of practical veri�cation of multilevel security of real

probabilistic systems (presumably based on de�nitions of security that allow some limited

information ow).

In prior work ([18]), we gave a logic in which an information-theoretic de�nition of security|

the �rst author's Probabilistic Noninterference (PNI) ([17])|was expressed as

KL(')! RL(') (1)

where KL(') is intuitively regarded as \L knows '" and RL(') is intuitively regarded as

\L is permitted to know '." Thus, Formula 1 is intuitively interpreted as \If L knows '

then L is permitted to know '", or in other words, \what L knows is a subset of what L is

permitted to know".

This intuitively-appealing formula was proposed by Glasgow, MacEwen, and Panangaden

[14] and further developed by Bieber and Cuppens [1, 2]. In other work [19] we extended

their approach to a probabilistic framework, retaining the syntactic form of their de�nition

of security, viz Formula 1. However, the knowledge operator (KL) proposed by Bieber and

Cuppens (and its probabilistic analog proposed by us) is nonstandard and rather unnatural.

For example, what a subject \knows" does not change over time. In particular, in our

probabilistic framework, subjects \know" the probability distribution over all of their future

interactions, including all future outputs they will receive. This is in contrast with the

intuitive notion of knowledge (as well as the standard formalizations of knowledge such as

by Chandy and Misra [6] or Halpern[21]) wherein a subject can acquire knowledge as it

interacts with its environment.

Another disadvantage of the prior work of Glasgow et al., Bieber and Cuppens, and the
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present authors is that Formula 1 makes use of a \permitted knowledge" operator (RL).

Such an operator has no standard semantics and seems, by its very nature, to be application

speci�c. For example, see [8] wherein \permitted knowledge" is essentially formalized as

\knowledge that is permitted, as de�ned in the present application".

In the present work, we develop a new formalization of PNI using the framework of Halpern

and Tuttle [22]. In this framework, the knowledge operator is given the standard semantics.

Also, our new formalization does not make use of a \permitted knowledge" operator; it is

therefore free of the nonstandard operators that were used in our previous formalization.

Thus, the present paper can be viewed as superseding our prior work.

In another sense, the present work can be viewed as a novel application of Halpern and Tut-

tle's framework, since we instantiate their framework with an adversary (see De�nition 2.1)

fundamentally di�erent from those described in [22].

The remainder of the paper is organized as follows. In x2 we set out our model of computa-

tion. In xx3 and 4, we set out the syntax and semantics of our logic and in x5, we prove its

soundness. In x6 we state our primary de�nition of security and prove that it is equivalent

to Probabilistic Noninterference. In x7 we state our veri�cation condition and show that it

is equivalent to the Applied Flow Model. Finally, in x8, we give some conclusions of this

work.

2 System Model

In this section, we describe our system model. This is the model by which we will (in x4)

give semantics to our logic. First, we describe the general system model, which is taken

from Halpern and Tuttle [22]. The framework of Halpern and Tuttle builds on the work of

Fagin and Halpern in [12]. It also encompasses earlier work of Ruspini in [35]. After giving

the general system model, we tailor the model to our needs by imposing some additional

structure on the model and (in Halpern and Tuttle's terminology) choosing the \adversaries",

resulting in our application-speci�c model.
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2.1 General System Model

We have a set of agents, P1; P2; : : : ; Pn, each with its own local state. The global state is

an n-tuple of the local agents' states.1 A run of the system is a mapping of times to global

states. We assume that time is discrete because we are dealing with security at the digital

level of the system. We are not, for example, addressing security issues such as analog

channels in hardware. Therefore, we will assume that times are natural numbers.

The probabilities of moving among global states are represented in the model by means of

labeled computation trees. The nodes of the trees represent global states. For any given

node in a tree, the children of that node represent the set of global states that could possibly

come next. Each arc from a node to one of its children is labeled with the probability of

moving to that state. Thus, from any given node, the sum of the probabilites on its outgoing

arcs must be one. We also assume the set of outgoing arcs is �nite and that all arcs are

labeled with nonzero probabilities. This �nal assumption can be viewed as a convention

that if the probability of moving from state x to state y is zero, then state y is not included

as a child of state x.

Certain events in a system may be regarded as nonprobabilistic, while still being nondeter-

ministic. The typical example occurs when a user is to choose an input, and in the analysis

of the system we do not wish to assign a probability distribution to that choice; in such

cases, we regard that choice as nonprobabilistic. All nonprobabilistic choices in the system

are lumped into a single choice that is treated as being made by an \adversary" prior to the

start of execution. Thus, after this choice is made, the system's execution is purely prob-

abilistic. In Halpern and Tuttle's words, the nonprobabilistic choices have been \factored

out".

In the model of computation, each possible choice by the adversary corresponds to a labeled

computation tree. In other words, a system is represented as a set of computation trees,

each one corresponding to a di�erent choice by the adversary. There is no indication how

the adversary's choice is made, just that it is made once and for all, prior to the start of

1Halpern and Tuttle also include the state of the environment as part of the global state. In their usage

of the term, the \environment" is intended \to capture everything relevant to the state of the system that

cannot be deduced from the agents' local states" [22, x2]. This typically includes messages in transit on

the communication medium. However, we model such things as part of the covert senders' and receivers'

local states; we therefore omit what they call the environment from our model. In contradistinction, we

refer to everything external to � as \the environment"; viz, the covert senders and receivers constitute the

environment.
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execution.

2.2 Application-Speci�c System Model

In this section, we impose some additional structure on the general model described in the

previous section. We �x the set of agents, �x our model and intuitions regarding commu-

nication, place some (environmental) constraints on the agents, and �x the set of choices

available to the adversary.

AGENTS As indicated in Figure 1 and the surrounding discussion, we can limit our model

to three agents: (1) the system under consideration, denoted �, (2) the covert senders (or

alternatively, the high environment), denotedH, and (3) the covert receivers (or alternatively,

the low environment), denoted L. In the remainder of the paper, we will tacitly assume that

the global system is comprised of these three agents.

MODEL OF COMMUNICATION Our model of communication is similar to those of

Bieber and Cuppens, Millen, and the �rst author (cf. [2], [32], and [17], respectively). We

view �'s interface as a collection of channels on which inputs and outputs occur. Since we

consider the agent H (resp., L) to consist of all processing that is done in the high (resp.,

low) environment, including any communication mechanism that delivers messages to �, we

will not need to model messages in transit or, in Halpern and Tuttle's terminology, the state

of the environment; rather, these components of the global state will be included as part of

H's and L's state.

In many systems of interest, the timing of events is of concern. (See Lampson"s [25] for an

early description of covert communication channels that depend on timing.) In particular,

some covert communication channels depend on a clock being shared between the covert

senders and receivers. Such channels are typically called timing channels; see Wray's [43]

for examples and discussion. To handle such cases, we take the set of times (i.e., the domain

of the runs) to be the ticks of the best available shared clock.2 Events occurring between

two ticks are regarded as occurring on the latter tick. This is su�cient for the purposes of

our analysis because, as far as the covert senders and receivers are concerned, this is the

most accurate information available. Also note that if the timing of certain events (wrt the

best available shared clock) is nonprobabilistic, we can consider the various possibilities to

2A shared clock may be an explicit clock supplied by �, e.g, the system clock , or it may be a clock

manufactured by the covert senders and receivers for their own purposes; see [43] for examples and discussion.

8



be choices that are made by the adversary and factor out that nondeterminism as discussed

by Halpern and Tuttle [22].

Since the mechanisms of high-level3 I/O routines may introduce covert channels (see, e.g.,

McCullough's [28, x2.3]), we take a very low-level view of I/O. In particular, we assume

one input and one output per channel per unit time (where times are chosen according to

the above considerations). That is, for each time we have a vector of inputs (one for each

channel) and a vector of outputs (one for each channel). If a given agent produces no new

data value at a given time, it may in fact serve as a signal in a covert channel exploitation.

Hence, we treat such \no new signal" events as inputs. Similarly, we do not consider the

possibility that the system can prevent an input from occurring. Rather, the system merely

chooses whether to make use of the input or ignore it. Any acknowledgement that an input

has been received is considered to be an output.

Given these considerations, we �x our model of communication as follows. We assume the

following basic sets of symbols, all nonempty:

C: a �nite set of input/output channel names, c1; : : : ; ck,

I: representing the set of input values,

O: representing the set of output values.

N
+ : representing the set of positive natural numbers. This set will be used as our set of

\times".

Since there is one input per channel at each time, we will be talking about the vector of

inputs that occurs at a given time. We will denote the set of all vectors of inputs by I[C].

Typical input vectors will be denoted a; a0; a1; : : : 2 I[C].

Similarly, we will denote the set of all output vectors by O[C] and typical output vectors

will be denoted b; b0; b1; : : : 2 O[C].

Now, to talk about the history of input vectors up to a given time, we introduce notation

for traces. We will denote the set of input traces of length k by IC;k. Mathematically, IC;k

is a shorthand for the set of functions from C � f 1; 2; : : : k g to I. Therefore, for a trace

� 2 IC;k, we will denote the single input on channel c 2 C at time k0 � k by �(c; k0).

3In this context, \high-level" means highly abstract rather than highly classi�ed .
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We will also need to talk about in�nite traces of inputs. For this we use the analogous

notation IC;1, which is short hand for the set of functions from C � N
+ to I.

Similarly, we will denote the set of output traces of length k by OC;k and the set of in�nite

output traces by OC;1. Naturally, for an output trace �, �(c; k) represents the output on

channel c at time k.

There will be situations where we want to talk about vectors or traces of inputs or outputs

on some subset of the channels, S � C. In such cases we will use the natural generalizations

of the above notations, viz, I[S], IS;k, IS;1, etc.

ENVIRONMENTAL CONSTRAINTS Any given agent will be able to see the inputs

and outputs on a subset of the system's I/O channels. We make this precise by \restricting"

vectors and traces to subsets of C. Given an input vector a 2 I[C] and a set of channels

S � C, we de�ne a � S 2 I[S] to be the input vector on channels in S such that a � S(c) =

a(c) for all c 2 S.

Similarly, given an input trace � 2 IC;k and a set of channels S � C, we de�ne � � S 2 IS;k

to be the input trace for channels in S such that � � S(c; k0) = �(c; k0) for all c 2 S and all

k0 � k.

We assume that the set of low channels, denoted L, is a subset of C. Intuitively, L is the

set of channels that the low environment, L, is able to directly see. In particular, L is able

to see both the inputs and the outputs that occur on channels in L.

In practice, there will be some type of physical or procedural constraints on the agent L to

prevent it from directly viewing the inputs and outputs on channels in C �L. For example,

those channels may represent wires connected to workstations that are used for processing

secret data. In this case, the secret workstations might be located inside a locked and guarded

room. In addition, periodic checks of the wires might be made to ensure that there are no

wiretaps on them. In this way, L is prevented from directly viewing the data that passes

over the channels in C � L.

On the other hand, we place no constraints on the set of channels that H is able to see. In

particular, we make the worst-case assumption that H is able to see all inputs and outputs

on all channels.

The above considerations are consistent with what we've called the \Secure Environment

Assumption" in previous work [17, 18]. In the present paper, this assumption is made precise
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in terms of our de�nition of the adversary to be given next.

THE ADVERSARY As discussed above, in Halpern and Tuttle's framework, all nonprob-

abilistic choices are factored out of the execution of the system by �xing an adversary at

the start of execution. To make use of this framework, we must de�ne the set of possible

adversaries from which this choice is made.

The \adversary" in our application is the pair of agents, H and L, that are attempting to

send data from the high environment across the system � to the low environment. To be

fully general, we model these agents as mixed strategies (in the game-theoretic sense). That

is, at each point in the execution of the system the strategy gives the probability distribution

over the set of next possible inputs, conditioned on the history up to the current point. In

the next section, we present an example to motivate the need for such generality. Before

doing that, we make the adversary precise with the following two de�nitions.

De�nition 2.1 An adversary is a conditional probability function, A(a j �; �) (where a 2

I[C] and for some time, k, � 2 IC;k and � 2 OC;k). Intuitively, the adversary describes the

environment's conditional distribution on the next input vector, given the previous history

of inputs and outputs. By saying that A(a j �; �) is a conditional probability function we

require that

� 0 � A(a j �; �) � 1, and

�
X
a

A(a j �; �) = 1

In fact, it is trivial to de�ne a conditional probability mass function corresponding toA where

a, �, and � are replaced with the values of the corresponding random variables [33]. Such a

conditional probability mass function can be de�ned in terms of the probability measure �A

given in de�nition 4.4 below. 2

De�nition 2.2 We say that an adversary A satis�es the Secure Environment Assumption

with respect to a set of channels L � C i� there exists a pair of conditional probability

functions H and L such that for all a 2 I[C], all k 2 N
+ , all � 2 IC;k, and all � 2 OC;k,

A(a j �; �) = H(a � (C � L) j �; �) � L(a � L j � � L; � � L)

(where � denotes real multiplication). 2
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The Secure Environment Assumption can be intuitively understood as saying that the input

on channels in (C � L) at time k is (conditionally) statistically independent of the input on

channels in L at time k, and the input on channels in L at time k depends only on previous

inputs and outputs on channels in L. For the remainder of this paper, we will assume

that all adversaries from which the initial choice is made satisfy the Secure Environment

Assumption.

Later in this section, we describe how a given adversary A and the description of a particular

system, �, are used to construct the corresponding computation tree TA. Since there is one

tree for each possible adversary, we can think of the set of trees as being indexed by the

adversaries. Therefore, we will often write TA, TA0 , TAi
, etc.

It is clear that for an adversary A that satis�es the Secure Environment Assumption (wrt

L), the conditional probability functions H and L are unique. Further, given H and L, there

is a unique adversary, A, for which H and L are the probability functions that satisfy the

corresponding constraint. There is therefore no ambiguity in writing TH;L, TH0;L0, etc. when

we want to refer to the components of the adversary individually.

Note that our de�nition of an adversary is not meant to be as general as the adversary

discussed by Halpern and Tuttle. (In fact, Halpern and Tuttle give no structure at all

to their adversary.) Rather, our adversary is application-speci�c; in particular, it is for

reasoning about multilevel security of probabilistic systems and is not designed to be used

outside that domain.

On the other hand, this particular adversary represents a novel application of Halpern and

Tuttle's framework. In Halpern and Tuttle's examples, the adversary represents one or both

of two things:

� the initial input to the system; and

� the schedule according to which certain events (e.g., processors taking steps) occur.

In contrast, our adversary does not represent a given input to the system. Rather, it repre-

sents a mixed strategy for choosing the inputs to the system. In some sense, we can think

of this as a generalization on the �rst item above; however, our application still �ts within

the framework set out by Halpern and Tuttle.
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THE STATE OF THE SYSTEM At any given point, P , in any given computation tree,

TA, there should be a well-de�ned state of the system. For our purposes, the state includes

the following information.

1. All inputs and outputs that have occurred on all channels up to the current time.

2. The adversary. In [22], Halpern and Tuttle make the assumption that all points in

all trees are unique. They suggest (and we adopt) the following idea to ensure that

this is true. The state encodes the adversary. That is, all nodes in tree TA encode A.

Note that we do not assume that any given agent knows the adversary; just that it is

somehow encoded in the state. We can think of the high part of the adversary, H, as

being encoded in the high environment and the low part, L, as being encoded in the

low environment.

3. Additional components of the global state represent the internal state of �. For exam-

ple, in describing �, it is often convenient to use internal state variables. The state of

these variables can be thought of as a vector of values, one value for each state variable.

Thus, the internal state, when it exists, will be denoted c, and the history of internal

states will be denoted .

COMPUTATION TREES Now that we have set out the possible states of the system

(i.e., the points of computations), we can talk about the construction of the computation

trees.

For each reachable point, P , we assume that �'s probability distribution on outputs is given.

For example, this can be given by a conditional probability distribution, O(b; c j �; �; ),

where �, �, and  give the history (up through some time k) of inputs, outputs, and internal

states, respectively, c is a vector of internal state variables (i.e., the internal system state at

time k + 1), and b is the vector of outputs produced by the system (at time k + 1).

Given O(b; c j �; �; ) and the adversary A, we can construct the corresponding computation

tree by starting with the initial state of the system (i.e., the point at the root of the tree

with empty histories of inputs, outputs, etc.) and iteratively extending points as follows.

Let P be a point in the tree with internal system history , input history �, and output

history �. We will make P 0 a child of P i�
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1. P 0 is formed from P by modifying the internal system state to c and extending P 's

input history (output history, resp.) with a (b, resp.); and

2. both O(b; c j �; �; ) and A(a j �; �) are positive.

In such cases, we label the arc from P to P 0 with O(b; c j �; �; ) � A(a j �; �), i.e., the

system, �, and the environment, A, make their choices independently.

RUNS OF THE SYSTEM A run of the system is an in�nite sequence of states along a

path in one of the computation trees. When we want to talk about the particular run, �,

and time, k, at which a point P occurs, we will denote the point by the pair (�; k). Further,

if we wish to talk about the various components of the run, i.e., the trace of the inputs, �,

outputs, �, or other variables, , we will denote the run by (�; �; ) and denote the point,

P , by (�; �; ; k).

For a given tree, T , we denote the set of runs (i.e., in�nite sequences of states), formed by

tracing a path from the root, by runs(T ).

For security applications we are concerned with information ow into and out of the system

rather than with information in the system per se. Thus, though our system model is

adequate to represent internal states and traces thereof, in subsequent sections it will be

adequate to represent systems entirely in terms of input and output. In particular, system

behavior can be represented by `O(b j �; �)' rather than `O(b; c j �; �; )'.

3 Syntax

In this section we set out our formal language and use it to describe two simple systems.

Then we give the axioms and rules of our logic.

3.1 Formation Rules

To describe the operation of the system under consideration (viz, �), we use a variant of

Lamport's Raw Temporal Logic of Actions (RTLA) [24].4 The primary di�erence is that we

4Roughly speaking, Raw Temporal Logic of Actions (RTLA) is the same as Lamport's Temporal Logic

of Actions (TLA) without the treatment of stuttering [24]. Since we are not, in this paper, concerned with

re�nement, we omit the considerations of stuttering and use RTLA.
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add a modal operator Pr i(') that allows us to specify and reason about the probabilistic

behavior of the system.

From the previous section, we assume the following basic sets of symbols, all nonempty: C,

I, O, and R. Members of R will have the usual representation|e.g., 43:5 2 R.

We will also be talking about the subjects (or agents) of the system. Formally, a subject ,

S � C, is identi�ed with the process's view of the system, i.e. the set of channels on which

it can see the inputs and outputs.

Formulae in the language are built up according to the following rules.

� constants from the set of basic symbols are terms.

� state variables (representing the value of that variable in the current state) are terms.

Among the state variables, there are two reserved for each communication channel.

For each c 2 C, we have a state variable cin that takes values from I, and another

state variable cout that takes values from O. Note that, implicitly, inputs are from the

covert senders and receivers into the system (�) and outputs are from the system to the

covert senders and receivers. This is because � is the system under consideration (i.e.,

with respect to which we are reasoning about security). We have no mechanism (and

no need) to specify communication between agents not including the system under

consideration.

� primed state variables (e.g., c0
in
) are terms. (These represent the value of the variable

in the next state.)

� We use standard operators among terms (e.g., + and � for addition and multiplication,

respectively), with parentheses for grouping subterms, to form composite terms.

� an atomic formula is an equation or inequality among terms.

� For any formula ', 2' is a formula (to be read intuitively as always ').

� We build up composite formulae, in the usual recursive fashion using ^, _, :, and !.

� for any nonmodal formula5 ', and for any subject S � C, PrS(') is a real-valued term.

Intuitively, PrS(') represents the subjective probability that S assigns to the formula

5A nonmodal formula is a formula that does not contain any knowledge or temporal operators.
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', that is, the probability of ', given the previous history of inputs and outputs on

channels in S. We refer to PrC(') (where C is the set of all communication channels) as

the objective probability of ', since it represents the probability of ' given all available

information, i.e., the unbiased probability of '.

To specify and reason about our security properties of interest, we also add a set of modal

operators on formulae: K1; : : : ; Kn, representing knowledge for each subject (represented by

the subscript of the operator). Therefore, we add the following additional formation rule to

our syntax.

� For any formula ', and for any subject S � C, KS(') (representing that S knows ')

is a formula.

Note that this and previous rules are mutually recursive; so, we can express, e.g., that S

always knows that x = 5.

3.2 Examples

We now give two simple examples of how to describe systems in our language. Ultimately,

we will have su�cient formal machinery to show that one of these systems is secure and the

other is not; however, here we simply set them out formally. These descriptions are meant

to give the reader an intuitive feel for the meaning of expressions in the language. Precise

meanings will be given in x4. Also, the second of these examples will motivate our choice to

model adversaries as strategies.

Example 3.1 The �rst example is a simple encryption box that uses a \one-time pad" [10].

It has two channels, high and low . At each tick of the system clock, it inputs a 0 or 1 on

the high channel and outputs a 0 or 1 on the low channel. The low output is computed by

taking the \exclusive or" (XOR) (denoted �) of the high input and a randomly generated

bit.

Note that we are modeling only the sender's (encrypting) side of a one-time pad system.

Thus, issues such as how the random bit string is distributed to, and used by, the receiver's

(decrypting) side are out of the scope of this speci�cation.
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It is well known that the XOR of a data stream with an independent uniformly distributed

bit stream results in an output stream that is uniformly distributed. Therefore, we can

describe the encryption box as follows.

Let C = fh; lg, I = f0; 1g, and O = f0; 1g. Then, the system is speci�ed by the following

formula.

2 (PrC(l
0
out

= 0) = 0:5 ^ PrC(l
0
out

= 1) = 0:5)

In this formula, lout is a state variable representing the output on the low channel, l. There-

fore, l0
out

is the output on l at the next time. Further, PrC(l
0
out

= 0) denotes the probability

that the output on l is a 0 at the next time. Hence, the entire formula says that at all times,

the probability of � producing a one (1) on the next clock tick is equal to the probability

of producing a zero (0), which is equal to 0:5. Note that we have not speci�ed the probabil-

ity distribution over inputs, since this constitutes environment behavior rather than system

behavior.

2

Example 3.2 The second example is an insecure version of the simple encryption box.

Shannon [37] gives an early description of this system.

As in the �rst example, the system computes the \exclusive or" of the current high input and

a randomly generated bit and outputs that value on the low channel at each time. However,

in this system, the randomly generated bit used at any given tick is actually generated and

output on the high output channel during the previous tick of the clock.

This can be expressed in our formalism as follows. Let C = fh; lg, I = f0; 1g, and O = f0; 1g.

The following formula speci�es the system.

2(PrC(h
0
out

= 0) = 0:5 ^ PrC(h
0
out

= 1) = 0:5 ^ l0
out

= hout � h0
in
)

Note that in the third conjunct, hout is unprimed, indicating that the output on l at the next

time is the \exclusive or" of the current output on h with the next input on h.

Now note that if the high agent ignores its output, this system acts exactly as the system

from the previous example (and can be used for perfect encryption). In particular, suppose
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we were to model an adversary as an input string|the input to be provided by the high

agent. Then, it is straightforward to prove that for any adversary (i.e., any high input string)

�xed prior to the start of execution, the output to low will be uniformly distributed and, in

fact, will contain no information about the high input string.

However, the bit that will be used as the one-time pad at time k is available to the high agent

at time k�1. Therefore, (due to the algebraic properties of \exclusive or", viz, x�x�y = y)

the high agent can use this information to counteract the encryption. In particular, the high

agent can employ a (game-theoretic) strategy to send any information it desires across the

system to the low agent.

For example, suppose the high agent wishes to send a sequence of bits, b1; b2; : : :. We'll

denote the high input (resp., output) at time k by hin(k) (resp., hout(k)). The appropriate

strategy for the high agent is as follows.

The high agent chooses its input for time k + 1 as hin(k + 1) = hout(k)� bk.

Thus, the output to low at time k + 1, denoted lout(k + 1) is computed as follows.

lout(k + 1) = hout(k)� hin(k + 1) [by the system description]

= hout(k)� hout(k)� bk [by the high strategy]

= bk [by the properties of �]

Thus, by employing the correct strategy, the high agent can noiselessly transmit an arbitrary

message over � to the low agent. This, of course, motivates our choice to model adversaries

as strategies, rather than, e.g., input strings.

2

We now have some sense of the formal language, with the exception of the knowledge operator

KS. As previously mentioned, this operator will be used to formalize the security properties

that interest us. We will illustrate that use in a later section. For now we mention that

in security analyses it is typical to assume that system users (and penetrators) know how

the system works (i.e., its speci�cations are not secret); we make such assumptions explicit

using our knowledge operator, in particular, if the system speci�cation is given by a formula

', we will assume that for every subject S, KS(').
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3.3 The Logic

We now give the axioms of our logic. In the following, we will use `'' and ` ' to refer to

formulae of our language.

Propositional Reasoning All instances of tautologies of propositional logic.

Temporal Reasoning The following are standard axioms for temporal reasoning about

discrete systems. The logic they constitute is generally called S4.3Dum. (See Gold-

blatt's [16] for details.) We have labelled the axioms with their historical names. Let

' and  be formulae of our language.

K (2(') ^2('!  ))! 2 

T 2'! '

4 2'! 22'

L 2(' ^ 2'!  ) _ 2( ^ 2 ! ')

Dum 2(2('! 2')! ')! (32'! ')

`3'' can be interpreted roughly as saying that at some point ' is true. Formally, it

is viewed as notational shorthand: for all formulae ', 3'
4
= :2:'. K guarantees

that the temporal operator respects modus ponens. Each of the other axioms captures

a feature of time that we desire. 4 gets us transitivity. T guarantees that we don't

run out of time points (seriality) and that temporal references include the present. L

guarantees that all points in time are connected (linearity). And, Dum guarantees

that time is discrete. (Between any two points in time there are at most �nitely many

other points; see Goldblatt's [16] for further discussion.)

Real Number Axioms Standard �eld and order axioms for the real numbers (to apply to

members of R and function terms with range R.) We will not enumerate these axioms.

(See any elementary real analysis book for enumeration, e.g., [27] or [34].)

Epistemic Reasoning The (nonredundant) axioms of the Lewis system S5 (cf. Chellas,

[7], or Goldblatt. [16]) apply to the knowledge operators (KS). As for temporal axioms,

we give the axioms their historical names. Let S be a subject, and let ' and  be

formulae of our language.
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K (KS(') ^KS('!  ))! KS( ) (Knowledge respects modus ponens.)

T KS(')! ' (What one knows is true.)

5 :KS(') ! KS:KS(') (If you don't know something, then you know that you

don't know it.)

Random Variable Axioms The standard requirements for random variables (in the prob-

ability theoretic sense).

PM (Positive Measure) for any formula, ', and any subject, S, PrS(') � 0

(The probability of any event is greater than or equal to zero.)

NM (Normalized Measure) for any channel, c, and any subject, S,

P
a2I PrS(cin = a) = 1 (The probability of all possibilities sums to one.)

P
b2O PrS(cout = b) = 1

Additional Axioms Since our logic contains three di�erent modalities, we need some ax-

ioms to describe the interactions among them. The following are not intended to be

complete in any sense; they are merely su�cient for the present purposes.

K2 For any formula ' and any subject S,

KS(2')! 2(KS')

(If S knows something is always true, then S always knows it's true.)

KPr For any formula ', any subject S, and any real number r,

KS(PrC(') = r)! KS(PrS(') = r)

(If S knows the objective probability of ', then S knows its subjective probability

of ' and the two probabilities are the same.)

The above are all of our axioms. We now give the rules of our logic, which are both standard.

MP (Modus Ponens)

From ' and '!  infer  .

Nec (Necessitation) This rule applies to both of our modal operators: 2 and KS. (It is

called `necessitation' because it was originally applied to a necessity operator.)

From ` ' infer ` 2'

From ` ' infer ` KS(')
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Note that in the above, `` '' indicates a derivation of ' from the axioms alone, rather than

from a set of premises. (Derivations are de�ned below.) Thus, in the case of the knowledge

operator (and analogously for 2) Nec says that if ' is a theorem (derivable without any

premises) then all subjects know '.

We can now de�ne formal derivations.

De�nition 3.3 Let � be a �nite set of formulae of our language. A �nite sequence of

formulae '1; '2; '3; : : : ; 'n is called a derivation (of 'n from �) i� each 'k (k = 1; : : : ; n)

satis�es one of the following:

� 'k 2 �

� 'k is an axiom.

� 'k follows from some theorem by Nec.

� For some i; j < k, 'k results from 'i and 'j by MP.

We write `� ` '' to indicate a derivation of ' from �, and we write `` '' to indicate a

derivation of ' from the axioms alone. 2

This completes our statement of the formal system.

4 Semantics

In the previous section we presented a syntactic system. So far we have only intuitive

meanings to attach to this formalism. In this section we provide semantics for our system

in terms of the Halpern-Tuttle framework and our application-speci�c model set out in x2.

4.1 Semantic Model

A model M is a tuple of the form:

hR;+; �;�;W; T ; C; I; O; v; �1; : : : ; �jP(C)j i

Here, R and its operations and ordering relation gives us the real numbers; W is the set of

points (i.e., global states or \worlds"); T is the set of labeled computation trees (with nodes

21



fromW ); C, I, and O are the sets of channels, possible inputs, and possible outputs, respec-

tively; v is the assignment function, which assigns semantic values to syntactic expressions

at each point; (values of v at a particular point P , will be indicated by the projection `vP ');

and the �iS are knowledge accessibility relations, one each for each subject S. Essentially,

two points are accessible for a given subject if that subject cannot distinguish between those

two points. (i.e., the subject does not \know" which of the points he is in.) We describe

these accessibility relation precisely in the next section. In the remainder of this paper we

will generally denote the accessibility relations corresponding to subject S by `�S'.

In assigning meaning to our language, it is of fundamental importance to associate a proba-

bility space with each labeled computation tree. In particular, for each labeled computation

tree TA we will construct a sample space of runs, RA, an event space, XA (i.e., those subsets

of RA to which a probability can be assigned), and a probability measure �A that assigns

probabilities to members of XA.

Our construction of this probability space is quite natural and standard (see, e.g., Seidel's

[36] as well as [22] for two instances). We will not go into detail explaining the basic concepts

of probability and measure theory here (cf. [20] or [39]).

De�nition 4.1 For a labeled computation tree TA, the associated sample space RA is the

set of all in�nite paths starting from the root of TA. 2

De�nition 4.2 For any sample space RA, the set e � RA, is called a generator i� it

consists of the set of all traces with some common �nite pre�x. Intuitively, generators are

probability-theoretic events corresponding to �nite traces. 2

De�nition 4.3 For any sample space RA, we de�ne the event space, XA, to be the

(unique) �eld of sets generated by the set of all generators. That is, XA is the smallest

subset of P(RA) that contains all of the generators and is closed under countable union and

complementation. 2

De�nition 4.4 We de�ne the probability measure, �A, on XA in the standard way.

Suppose e is a generator corresponding to the �nite pre�x given by (�; k). Then, �A(e) is

de�ned as the product of the transition probabilities from the root of the tree, along the

path �, up to time k. Further, it is well known that there is a unique extension of �A to the

entire event space (cf. [20]). 2
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We will be rather abusive in the use of our probability measures �A. In particular, when

we have a �nite set of points, x, we will write �A(x) to denote the probability (as assigned

by �A) of passing through one of the points in x. Technically, this is wrong, since �A is

de�ned for sets of runs; not for sets of points. However, the mapping between the two is

extremely natural; the set of runs corresponding to a set of points is the set of all runs that

pass through those points. Further, by the construction of our probability spaces, all sets of

runs corresponding to �nite sets of points are measureable. Therefore, there is no danger in

this abuse of notation and it greatly simpli�es our presentation.

4.2 Assignment Function

Given the above semantic model, the main technical question we need to address in assigning

meaning to formulae in our logic is:

For a given subject at a given point in its execution (i.e., at a given node in a

given computation tree), what sample space should be used in evaluating the

probability that subject assigns to a given formula?

As discussed by Halpern and Tuttle, after choosing these sample spaces, assigning meaning

to probability formulae is straightforward. Further, assigning meanings to nonprobability

formulae will be done in the standard ways, so that too will be straightforward.

We denote the sample space for subject S at point P by SS;P . Our approach in assigning these

sample spaces is discussed by Halpern and Tuttle, where they describe it as \correspond[ing]

to what decision theorists would call an agent's posterior probability" [22, x6]. In particular,

we choose SS;P to be the set of points within tree(P ) that have the same history of inputs

and outputs on channels in S as occur on the path to point P . Essentially, this means that

S's probability space takes into account all inputs and outputs that S has seen up to the

current point; S does not forget anything it has seen. More precisely, we have the following

de�nitions.

De�nition 4.5 Let S � C be a subject and let �1 = (�1; �1; 1) and �2 = (�2; �2; 2) be

two runs (not necessarily in the same tree). We say that �1 and �2 have the same S-history
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up to time k if and only if6

8i; 1 � i � k; 8c 2 S; �0(c; i) = �(c; i) ^ � 0(c; i) = �(c; i)

2

De�nition 4.6 Let S � C be a subject and let P1 = (�1; k1) and P2 = (�2; k2) be two

points (not necessarily in the same tree). We say that P1 and P2 have the same S-history if

and only if the following two conditions hold.

1. k1 = k2.

2. �1 and �2 have the same S-history up to time k1.

2

De�nition 4.7 Since points are unique even across trees, for a given point P , there is no

ambiguity in referring to \the tree that contains P". In the following, we will use tree(P ) to

denote that tree. 2

De�nition 4.8 Let S � C be a subject and P be a point; the sample space for S at point

P is given by

SS;P
4
= f P 0 j tree(P 0) = tree(P ) ^ P 0 and P have the same S-history g

2

Now, for a given point P , we will assign truth values to temporal formulae ' at that point.

In addition, we assign values to variables, for example the input on a channel, at that point.

The assignment function that does both of these is denoted by vP .

To de�ne vP , we will need to assign truth values to formulae containing primed variables.

Therefore we will also de�ne functions v(P1;P2) (where P1 and P2 are points and we think

6In other settings, we might also consider the possibility that a subject S has internal state variables and

could use these to make �ner distinctions between points. However, in our application, all of the internal

processing of the relevant subjects (viz, H and L) is encoded in the adversary and is thus factored out of

the computation tree. We therefore do not lose any needed generality in making this de�nition.
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of P2 as being a child of P1 in some tree) to assign truth values to formulae over a pair of

points.

We de�ne vP and v(P1;P2) mutually recursively below. First we present some additional

notation.

Notation Since there is a one-to-one correspondence from trees to adversaries, we can refer

to \the adversary corresponding to tree(P )". We denote that adversary by A(P ).

We use the notation succ(P ) to denote the set of nodes that immediately succeed P in

tree(P ) (i.e., the children of P ).

We use the notation extensions(P ) to denote the set of in�nite sequences of states starting

at P in tree(P ). 2

We now de�ne vP and v(P1;P2). Let P be a point at time k in the execution � = (�; �; ) in

computation tree TA.

� Numbers are assigned to number names.

� Members of I and O are assigned to their syntactic identi�ers.

� For any channel c 2 C,

vP (cin)
4
= �(c; k)

� For any channel c 2 C,

vP (cout)
4
= �(c; k)

� For any variable name, X, excluding channel variables (such as cin or cout)

vP (X)
4
= (X; k)

� Members of R, I, and O are assigned values at a pair of points by referring to their

values in the �rst of the points, e.g.,

v(P1;P2)(0:5)
4
= vP1(0:5)

In contrast, variables may change their value from one point to the next, so unprimed

variables are evaluated by referring to the �rst point, e.g., for a state variable X,

v(P1;P2)(X)
4
= vP1(X)
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whereas primed variables are evaluated by referring to the second point, e.g.,

v(P1;P2)(X
0)
4
= vP2(X)

� Composite terms are assigned values at a pair of points by evaluating the constituent

parts at the same pair of points and applying the corresponding semantic operator,

e.g.,

v(P1;P2)(X
0 + Y )

4
= v(P1;P2)(X

0) + v(P1;P2)(Y )

� Similary, nonmodal formulae are assigned truth values at a pair of points by evaluating

the constituent parts at the same pair of points, e.g.,

v(P1;P2)(X � Y ) = true i� v(P1;P2)(X) � v(P1;P2)(Y )

and

v(P1;P2)(' ^  ) = true i� v(P1;P2)(') = true and v(P1;P2)( ) = true

� To interpret the probability of a nonmodal formula ' at a point P , we will take the set

of all pairs of points, (P1; P2) where P1 is in SS;P and P2 emanates from P1. Restricting

to this set, we compute the probability of those pairs such that v(P1;P2)(') evaluates to

true. More precisely, for any nonmodal formula, ', and for any subject S � C,

vP (PrS('))
4
= �A(P )(SS;P (') j SS;P )

where

SS;P (')
4
= fP2 j 9P1 2 SS;P such that P2 2 succ(P1) and v(P1;P2)(') = true g

� An atomic formula, ', is true at a point, P , i� it is true for all pairs of points emanating

from P . More precisely,

vP (') = true i� 8P 0 2 succ(P ); v(P;P 0)(') = true

(Since we have not needed to include quanti�cation in our language we are free to use

`8' and `9' as metalinguistic shorthand.)

� For any formula, ',

vP (2') = true i� 8� 2 extensions(P ); 8iv(�;i)(') = true
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� Composite formulae are assigned truth values at points in the natural way. For exam-

ple,

vP (' ^  ) = true i� vP (') = true and vP ( ) = true

� Our knowledge operator is an S5 modal operator and is given semantics in terms of

the accessibility relation (on points) in the standard way; viz, for any two points, P1

and P2 (not necessarily in distinct trees) and any subject, S � C, we say that P2 is

accessible from P1, denoted `�S(P1; P2)' if and only if P1 and P2 have the same S-

history; further, we use these accessibility relations to assign truth values to formulae

of the form KS(') as follows.

vP (KS(')) = true i� 8P 0; �S(P; P
0) implies vP 0(') = true

In the remainder of the paper, for a modelM = hR;+; �;�;W; T ; C; I; O; v; �1; : : : ; �jP(C)j i,

formula ', and set of formulae �, we will use `M j= '' to indicate that ' evaluates to true

at the roots of all trees in T and M j= � to indicate that all members of � evaluate to true

at the roots of all trees in T .7 Finally, we will use `� j= '' to indicate that M j= � implies

M j= ' for every model M .

5 Soundness

In x6 and x7 below we give two syntactic characterizations of security and show that the se-

mantic interpretations of our syntactic characterizations are equivalent to certain previously

developed de�nitions. However, the signi�cance of these results is greatly reduced unless

the logic is sound. For, without soundness there is no guarantee that any formal proof of

security implies any independently motivated notion of security. A soundness theorem gives

us just such a correspondence.

Theorem 5.1 [Soundness] Given a set of formulae of our language � and a formula ',

If � ` '; then � j= ':

2

7Typically, semantics for modal logics treat truth in a model as truth in all possible worlds in that model.

Those more familiar with this usage than with ours should note that on a computational view the primary

notion is that of a run rather than a world (state). Thus, truth in a model is more naturally thought of as

truth in all runs in that model (hence, at the initial state of all runs).
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Proof: In order to prove soundness we must show that the axioms are valid and the rules

are truth preserving (except Nec which need only be theorem preserving). For most of the

axioms and all of the rules the results are completely standard. (Cf. Chellas [7] and Goldblatt

[16].) Hence, we do not set them out here. We speci�cally assumed a semantics in which

all the rules and axioms concerning logical connectives preserve soundness. Since we assume

the real numbers are part of our models, the axioms concerning them must all be valid.

Likewise, because the Pr(') terms are interpreted as conditional probabilities of events,

the RV axioms are valid in our semantics since they reect basic facts about probability

measures. The accessibility relations, set out above in x4, are clearly equivalence relations.

Thus, by a standard result of modal logic, the S5 axioms are all valid and Nec (for the

knowledge operators) is theorem preserving (cf. [7]). The temporal reasoning axioms are

similarly valid and Nec for the temporal operator is theorem preserving based on the time

structure of our model of computation (cf. [16]).

All that remains is to show the soundness of our two additional axioms. To show the validity

of K2, let P1 be a point where

vP1(2(KS')) = false

Then, by our de�nition of the semantic assignment function, there exist P2, �2, and k2 such

that the following three conditions hold.

�S(P1; P2) (2)

�2 2 extensions(P2) (3)

v(�2;k2)(') = false (4)

Now, (�2; k2) is a point in an extension of P2. Hence, Equation 4 implies

vP2(2') = false (5)

which, along with Formula 2, implies

vP1(KS(2')) = false

and K2 is valid.

To show the validity of KPr, we'll assume P1 is a point such that

vP1(KS(PrC('))) = r (6)
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and show that

vP1(KS(PrS('))) = r (7)

Applying the semantic assignment function to Equation 6 implies that for all P 0, �S(P1; P
0)

implies

�A(P 0)(SC;P 0(') j SC;P 0) = r (8)

To show Equation 7, let P2 be a point such that �S(P1; P2). By the semantic assignment

function, we have the following.

vP2(PrS(')) = �A(P2)(SS;P2(') j SS;P2) (9)

By the de�nition of conditional probability and the additive property of probability measures,

we can expand the right-hand side of Equation 9 to get:

vP2(PrS(')) =

P
P 0 �A(P2)(SS;P2(') j SC;P 0)�A(P2)(SC;P 0)

�A(P2)(SS;P2)
(10)

(where the summation is taken over all P 0 such that P 0 is in the same tree and has the same

S-history as P2).

Limiting SS;P2(') to those points emanating from SC;P 0 results in SC;P 0('), so Equation 10

can be rewritten as:

vP2(PrS(')) =

P
P 0 �A(P2)(SC;P 0(') j SC;P 0)�A(P2)(SC;P 0)

�A(P2)(SS;P2)
(11)

Since P2 and P
0 are in the same tree, A(P2) = A(P 0). Also, since �S(P1; P2), all of the P

0 in

the above equation have the same S-history as P1. Therefore, by Equation 8,

vP2(PrS(')) =
r
P

P 0 �A(P2)(SC;P 0)

�A(P2)(SS;P2)
(12)

which, again by the additive property of probability measures, implies

vP2(PrS(')) = r (13)

and KPr is valid, which completes the proof. 2

This completes our discussion of the logic itself. In the remainder of the paper we focus on

security and applications of the logic thereto.
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6 Formal De�nition of Security

In this section, we give our primary de�nition of security|which we call the Formal Se-

curity Condition (FSC)|and show that its meaning is equivalent to our own Probabilistic

Noninterference (PNI) [17], which is itself equivalent to Browne's independently-developed

Stochastic Non-Interference [3]. As described in [17], PNI is motivated by previous work on

Noninterference by Goguen and Meseguer [15] and by connections to information theory. In

particular, when the system is modeled as a two-way channel with memory ([38]) PNI im-

plies that there is no information ow over the channel from the covert senders to the covert

receivers ([17]). (See Browne's [4] for other connections to classical information theory.)

In contrast, the intuition for our de�nition of security in the present paper derives from an

understanding of what the low subject knows when using a secure system versus an insecure

system. The intuition for our de�nition is as follows.

The system under consideration is \secure" i� before the low subject receives any

given output (b) with any given probability (r), it will already know that b is

about to occur with probability r.

In essence, since the low subject already knows the probability distribution over its upcoming

outputs, it cannot learn any new information when it actually receives those outputs. To

make this precise, we introduce the following shorthand.

Notation Recall that a subject is formalized as a subset of C, the set of �'s communication

channels; this subset represents the subject's view of the system. For a given subject L =

fl1; l2; : : : lng � C we often require a formula specifying what L receives as output at the

next time. This can be speci�ed as

(l1)
0
out

= b1 ^ (l2)
0
out

= b2 ^ : : : ^ (ln)
0
out

= bn

(where bi 2 O for 1 � i � n). We will specify this more compactly as

L0
out

= bL

(where L � C is the subject equal to fl1; l2; : : : lng and bL 2 O[L] is the output vector equal

to [b1; b2; : : : ; bn]). 2

We now de�ne the Formal Security Condition as follows.
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De�nition 6.1 Let L � C be a subject. Suppose a system � is described by a set of

formulae in our logic, �. We say that � satis�es the Formal Security Condition (FSC) with

respect to L if and only if, for every bL 2 O[L], the formula

2(PrL(L
0
out

= bL) = r! KL(PrL(L
0
out

= bL) = r))

is derivable from �. 2

Note that this de�nition refers only to L's next output. Nevertheless, we will see below, in

Theorem 6.9, that this is su�cient to insure that high behavior has no e�ect on any L-events,

including all future outputs visible to L.

At �rst glance, this property may appear too strong to be satis�ed by useful systems. In

particular, the reader may wonder:

if users know the probability distribution over their outputs before they get them,

why would they bother to use the system at all? After all, they won't learn

anything by using it.

To see why this is not a concern, we need to keep in mind that the low subject L represents

not a single user, but rather, the entire low environment. For example, suppose the system

we are analyzing is a two-level database containing unclassi�ed and secret information. In

this case, L represents all users and processes that are operating at the unclassi�ed level,

including the users and processes involved in entering and updating unclassi�ed data. Thus,

an individual low user may not, in practice, know the answer to his query before submitting

it, but in principle the information is available to him, since he can (in principle) know the

entire history of the low environment, including all low inputs.

On the other hand, the reader may now wonder:

in what way can a system fail to satisfy FSC? That is, in what case does the low

environment fail to know the probability distribution on its next output?

The answer is: in precisely those cases where that probability distribution is a�ected by

the high environment. That is, if the high environment can inuence the probability with

which the low environment gets certain outputs, then the low environment will not know

that probability distribution (except, e.g., by statistical inference after it has received those
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outputs). Further, from information theory we know this is precisely the situation in which

the high environment can send information to the low environment, i.e., this is the situation

in which the system has a covert channel.

Now we would like to show that FSC is equivalent to PNI. To do so, we will talk about the

\meaning" of FSC, or more precisely, the semantic interpretation of FSC, which we de�ne

as follows.

De�nition 6.2 We say that � satis�es the Semantic Interpretation of FSC with respect to

L if and only if, for every bL 2 O[L],

� j= 2(PrL(L
0
out

= bL) = r ! KL(PrL(L
0
out

= bL) = r))

2

To prove the semantic interpretation of FSC is equivalent to PNI, we also need to recast the

latter in terms of our model. We do this as follows.

De�nition 6.3 Let A1 and A2 be two adversaries that satisfy the Secure Environment

Assumption. We will say that A1 and A2 agree on L behavior i� there exist H1, H2,

and L such that H1 and L are the unique probability functions that describe A1 (as in

De�nition 2.2) and H2 and L are the unique probability functions that describe A2. 2

De�nition 6.4 Let S � C be a subject and let e be a set of runs, f�ig, (not necessarily

taken from any one computation tree). We say that e is an S-event if and only if there exists

a time k 2 N
+ such that for any two runs, �1 and �2, having the same S-history up to time

k, �1 2 e i� �2 2 e.

For an S-event, e, we will refer to the least k such that above condition holds as the length

of e. 2

Intuitively, e is an S-event if and only if there is some �nite time k (i.e., its length) after

which S can always determine whether or not e has occurred.

Note that in general, an S-event contains runs from more than one computation tree. There-

fore, such \events" will not be measurable in any of our probability spaces. Rather, we think

of them as meta events and we will be interested in the measure of the subset of the runs that
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are contained in a given computation tree. To make this precise, we introduce the following

de�nition.

De�nition 6.5 Given a computation tree, TA, and an S-event, e, the projection of e onto

TA, denoted eA, is given by:

eA
4
= runs(TA) \ e

2

When it is clear from context what is meant, we ignore the distinction between meta-events

and their projections, e.g., we write `�A(e)' for `�A(eA)'.

Observation 6.6 Every projection of every S-event is measurable. That is, for any S-event,

e, and any computation tree, TA,

eA 2 XA

This is due to the restriction on S-events that they be observable within some �nite time.

In particular, the projection of an S-event onto a tree, T , must also be observable within a

�nite time, and so it must be formable from a �nite number of unions and complementations

of the generators of T . 2

De�nition 6.7 Let � be a system with computation trees T (�). We say that � satis�es

Probabilistic Noninterference (PNI) with respect to a subject L � C i� for any two trees

satisfying the Secure Environment Assumption, TA; TA0 2 T (�) and any L-event, e, if A

and A0 agree on L behavior, then

�A(e) = �A0(e)

2

Now we are in a position to state the main theorem of this section. Before doing so, we state

and prove a lemma.

Lemma 6.8 If TA and TA0 are two trees such thatA andA0 agree on L behavior (and satisfy

the Secure Environment Assumption) then the following two conditions are equivalent.
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1. For any low output vector, bL 2 O[L], and any two points P1 2 TA and P2 2 TA0 such

that �S(P1; P2),

�A(P1)(SL;P1(L
0
out

= bL) j SL;P1) = �A(P2)(SL;P2(L
0
out

= bL) j SL;P2)

2. For any L-event, e,

�A(eA) = �A0(eA0)

2

Proof: We begin by observing that SL;P1(L
0
out

= bL) and SL;P2(L
0
out

= bL) are projections of

the same L-event and that SL;P1 and SL;P2 are projections of another L-event. Therefore the

backward direction of the lemma (i.e., that condition 2 implies condition 1) follows easily. In

particular, let P1 2 TA and P2 2 TA0 be two points such that �S(P1; P2). Then condition 2

implies

�A(P1)(SL;P1) = �A(P2)(SL;P2)

and further|since the intersection of two L-events is again an L-event|that

�A(P1)(SL;P1(L
0
out

= bL) \ SL;P1) = �A(P2)(SL;P2(L
0
out

= bL) \ SL;P2)

Therefore condition 1 holds by the de�nition of conditional probability.

To prove the forward part of the lemma, we start by showing that it holds for a certain

subset of L-events, namely those L-events corresponding to �nite L-histories.

Let e be an L-event such that there exists a time, k, (the length of e) and a characteristic

run, �, such that for any run, �0,

�0 2 e i� �0 has the same L-history as � up to time k

That is, e corresponds to the �nite L-history characterized by � up to time k.

We now prove the forward part of the lemma for this subclass of L-events by induction on

the length of e.

Base case: The length of e is zero.

Since all runs have the same L-history up to time 0, the only two L-events of length 0 are

the empty set, ;, and the set of all runs from all trees, R. In the former case,

�A(;A) = 0 = �A0(;A0)
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and in the latter case,

�A(RA) = 1 = �A0(RA0)

Thus, the base case is proved.

Induction case: Assume condition 2 holds for all L-events (corresponding to �nite L-

histories) of length k. Let e be an L-event corresponding to a �nite L-history of length k+1.

Suppose that � is a run that (up to time k + 1) characterizes e.

Now, let e be the L-event characterized by � up to time k. Intuitively, e corresponds to the

�nite L-history obtained by truncating e at time k. By the induction hypothesis,

�A(eA) = �A0(eA0) (14)

If �A(eA) = 0, then �A(e) = 0 = �A0(e) and the induction case holds trivially, so we assume

�A(eA) > 0.

By Equation 14, we also have that �A0(eA) > 0. Thus, by the de�nition of conditional

probability,

�A(e) = �A(e) � �A(e j e) (15)

and

�A0(e) = �A0(e) � �A0(e j e) (16)

Let � 2 IL;k and � 2 OL;k be the low input and output history, resp., that characterize e

and let aL 2 I[L] and bL 2 O[L] be the low input and output vectors at time k + 1 that are

needed to additionally characterize e. Then, by the construction of our probability measures

(as described in x2.2) and by the Secure Environment Assumption, we have that

�A(e j e) = �A(b̂L; j e) � L(aL j �; �) (17)

and

�A0(e j e) = �A0(b̂L j e) � L
0(aL j �; �) (18)

where b̂L is the meta-event representing that the low output vector at time k + 1 is b and L

and L0 are the low environments of A and A0, respectively.

Since A and A0 agree on L behavior,

L(aL j �; �) = L0(aL j �; �) (19)
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Further, since �A(e) and �A0(e) are both greater than zero, there are points in both trees,

P1 2 TA and P2 2 TA0 , each of whose L-histories are (�; �). By condition 1,

�A(P1)(SL;P1(L
0
out

= b̂L) j SL;P1) = �A(P2)(SL;P2(L
0
out

= b̂L) j SL;P2)

But notice that SL;P1 and SL;P2 are projections of e and SL;P1(L
0
out

= bL) and SL;P2(L
0
out

= bL)

are projections of b̂L. Therefore,

�A(b̂L j e) = �A0(b̂L j e) (20)

Thus, by Equations 17, 18, 19, and 20, we have that

�A(e j e) = �A0(e j e) (21)

and �nally, by Equations 14, 15, 16, and 21, we have that

�A(e) = �A0(e)

and the induction case is proved.

Now, we can complete the proof by observing that every L-event can be constructed by

taking a �nite number of unions and complementations of L-events that correspond to �nite

L-histories. That is, the L-events that correspond to �nite L-histories are analogous to the

generators of our event spaces. Thus, the desired result that �A(e) = �A0(e) for arbitrary L-

events follows from the fact that the measures are equal on all of the L-events that correspond

to �nite L-histories. 2

We can now prove the following theorem relating PNI and FSC.

Theorem 6.9 Let � be a set of formulae describing � and let L � C be a subject. Then, �

satis�es PNI with respect to L i� � satis�es the semantic interpretation of FSC with respect

to L. 2

Proof: Let M = hR;+; �;�;W; T ; C; I; O; v; �1; : : : ; �jP(C)j i be a model such that M j= �.

� satis�es the semantic interpretation of FSC (wrt L) i� for every bL 2 O[L],

M j= 2(PrL(L
0
out

= bL) = r! KL(PrL(L
0
out

= bL) = r))
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which holds i� for every bL 2 O[L] and every root, P , of any tree in T ,

vP (2(PrL(L
0
out

= bL) = r! KL(PrL(L
0
out

= bL) = r))) = true

which, by applying the semantic assignment function, holds i� for every bL 2 O[L] and every

two points P1; P2 2 W such that �L(P1; P2),

vP1(PrL(L
0
out

= bL) = r) = true implies vP2(PrL(L
0
out

= bL) = r) = true

which holds i� for every bL 2 O[L] and every two points P1; P2 2 W such that �L(P1; P2),

vP1(PrL(L
0
out

= bL)) = vP2(PrL(L
0
out

= bL))

which, again by the semantic assignment function, holds i� for every bL 2 O[L] and every

two points P1; P2 2 W such that �L(P1; P2),

�A(P1)(SL;P1(L
0
out

= bL) j SL;P1) = �A(P2)(SL;P2(L
0
out

= bL) j SL;P2) (22)

It is therefore su�cient to show that � satis�es PNI i� Equation 22 holds. That Equation 22

implies PNI follows easily from Lemma 6.8. In particular, let A and A0 be two adversaries

that agree on L behavior. From Equation 22, Lemma 6.8 implies that for any L-event e,

�A(e) = �A0(e)

Hence, � satis�es PNI.

To show the reverse direction, assume � satis�es PNI, let bL 2 O[L] be arbitrary, and let

P1; P2 2 W be two points such that �L(P1; P2).

Note that we cannot apply PNI immediately, since it may be the case that A(P1) and A(P2)

do not agree on L behavior. For this reason, for each point P , we construct a new adversary

A(P ) as follows. (Note that A(P ) is an adversary corresponding to a tree that does not, in

general, contain P .)

Suppose P = (�; �; k) and A(P ) = (H;L). Then A(P ) = (H;L), where L is de�ned as

follows.

For k0 � k, �0 2 IL;k0, and � 0 2 OL;k0,

L(a � L j �0; b0) =

8><
>:

1; if a � L = (�; k0) � L;

0; otherwise.
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For k0 > k, �0 2 IL;k0, and � 0 2 OL;k0,

L(a � L j �0; b0) =

8><
>:

1; if a � L = a0;

0; otherwise.

(where a0 is some constant input on channels in L). That is, L blindly and deterministically

follows � � L up to time k and then blindly and deterministically inputs a0 from then on.

Now, note that according to our construction of the computation trees, there is a point

P = (�; �; k) in a given tree T if and only if at each point leading up to P , say P 0 = (�; �; k0)

(k0 < k), the following three conditions all hold.

O(�(k0 + 1) j � � k0; � � k0) > 0 (23)

H(�(k0 + 1) � (C � L) j � � k0; � � k0) > 0 (24)

L(�(k0 + 1) � L j � � k0 � L; � � k0 � L) > 0 (25)

(where � � k0 and � � k0 are the restrictions of � and � to IC;k0 and OC;k0, respectively.

Further, since in constructing TA(P ) we have retained the output probability function O and

high behaviorH used in TA(P ) and chosen L to ensure Equation 25 holds appropriately, there

is a point P 2 TA(P ) that has the identical I/O history as P 2 TA(P ). Further, for any point

P 0 2 TA(P ) having the same L-history as P , there is a corresponding point P 0 2 TA(P ) with

the same I/O history as P 0.

Finally, note that by our construction of the computation trees, since P 0 and P 0 have the

same I/O history, say (�0; � 0), the sum of the probabilities on arcs emanating from P 0, where

L0
out

= bL is equal to the sum of the probabilities on arcs emanating from P 0, where L0
out

= bL.

In particular, they are both equal to

X
b � L=bL

O(b j �0; � 0)

Since this is the case for all points in TA(P ) having the same L-history as P , we have that

�A(P )(SL;P (L
0
out

= bL) j SL;P ) = �A(P )(SL;P (L
0
out

= bL) j SL;P ) (26)

In particular, Equation 26 holds for both P1 and P2.
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Now note that A(P1) and A(P2) agree on L behavior. Therefore, since SL;P (L
0
out

= bL)\SL;P

and SL;P are L-events, PNI implies

�A(P1)(SL;P1(L
0
out

= bL) j SL;P1) = �A(P2)(SL;P2(L
0
out

= bL) j SL;P2) (27)

Finally, Equations 26 and 27 imply Equation 22, which completes the proof. 2

The signi�cance of this theorem is that (given soundness) verifying that a system satis�es

FSC is su�cient to show that it satis�es PNI, which (as was previously mentioned) is a

necessary and su�cient condition for a system to be free of covert channels. In the next

section, we discuss the issue of verifying FSC.

7 Veri�cation

7.1 Syntactic Statement

In [30], McLean de�nes the Flow Model (FM) with the motivation of providing an abstract,

but precise, explication of information ow security. McLean's intent for FM is to provide a

characterization of security against which more concrete security models can be evaluated.

In [17], the �rst of the present authors studies a more concrete version of FM, called the

Applied Flow Model (AFM), and shows that AFM captures a strictly stronger notion of

security than PNI.

In this paper, we have another reason for studying AFM: it is more easily veri�ed than FSC.

De�nition 7.1 Let L � C be a subject. Suppose � is a set of premises that describe a

system �. We say that � satis�es the Syntactic Veri�cation Condition (SVC) with respect

to L if and only if, for every bL 2 O[L], the formula

2(PrC(L
0
out

= bL) = r! KL(PrC(L
0
out

= bL) = r))

is derivable from �. 2

Intuitively, SVC says that at all times, the low environment knows the objective probability

distribution on its next output.

In the next section, we show this statement is equivalent to a statement about conditional

statistical independence. Namely, conditioned on the previous L-history, the next output on

L is statistically independent of the previous non-L (i.e., high) history.
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7.2 Relationship to AFM

In this section we show that � j= SVC if and only if the system speci�ed by � satis�es AFM

(i.e., the relationship between SVC and AFM is analogous to the relationship between FSC

and PNI).

De�nition 7.2 Let � be a system with computation trees T (�) and let L � C be a subject.

We will say that � satis�es the Applied Flow Model (AFM) with respect to L i� for any tree,

TA 2 T (�) (satisfying the Secure Environment Assumption with respect to L), any point

P 2 TA, and any low output vector, bL 2 O[L],

�A(SC;P (L
0
out

= bL) j SC;P ) = �A(SL;P (L
0
out

= bL) j SL;P ) (28)

2

This de�nition is, except for notational di�erences, exactly the de�nition of AFM as given

in [17]. Now we can prove the following theorem.

Theorem 7.3 Let � be a set of formulae describing � and let L � C be a subject. Then,

� satis�es AFM with respect to L i� � satis�es the semantic interpretation of SVC with

respect to L. 2

Proof: Let M = hR;+; �;�;W; T ; C; I; O; v; �1; : : : ; �jP(C)j i be a model such that M j= �.

� satis�es the semantic interpretation of SVC (wrt L) i� for every bL 2 O[L],

M j= 2(PrC(L
0
out

= bL) = r! KL(PrC(L
0
out

= bL) = r))

which holds i� for every bL 2 O[L] and every root, P , of any tree in T ,

vP (2(PrC(L
0
out

= bL) = r! KL(PrC(L
0
out

= bL) = r))) = true

which, by applying the semantic assignment function, holds i� for every bL 2 O[L] and every

two points P1; P2 2 W such that �L(P1; P2),

vP1(PrC(L
0
out

= bL) = r) = true implies vP2(PrC(L
0
out

= bL) = r) = true

which holds i� for every bL 2 O[L] and every two points P1; P2 2 W such that �L(P1; P2),

vP1(PrC(L
0
out

= bL)) = vP2(PrC(L
0
out

= bL))
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which, again by the semantic assignment function, holds i� for every bL 2 O[L] and every

two points P1; P2 2 W such that �L(P1; P2),

�A(P1)(SC;P1(L
0
out

= bL) j SC;P1) = �A(P2)(SC;P2(L
0
out

= bL) j SC;P2) (29)

Now, to show that the semantic interpretation of SVC implies AFM, we assume Equation 29

and show that Equation 28 holds. Consider the right-hand side of Equation 28.

�A(SL;P (L
0
out

= bL) j SL;P )

By the de�nition of conditional probability and the additive property of probability measures,

this is equal to: P
P 0 �A(SL;P (L

0
out

= bL) j SC;P 0)�A(SC;P 0)

�A(SL;P )

(where the summation is taken over all P 0 such that P 0 is in the same tree and has the same

L-history as P ).

Limiting SL;P (L
0
out

= bL) to those points emanating from SC;P 0 results in SC;P 0(L0
out

= bL),

so the above is equal to:

P
P 0 �A(SC;P 0(L0

out
= bL) j SC;P 0)�A(SC;P 0)

�A(SL;P )

Now, by Equation 29, �A(SC;P 0(L0
out

= bL) j SC;P 0) = �A(SC;P (L
0
out

= bL) j SC;P ) for all P
0

having the same L-history as P , so the above is equal to

�A(SC;P (L
0
out

= bL) j SC;P )
P

P 0 �A(SC;P 0)

�A(SL;P )

which, again by the additive property of probability measures, is equal to

�A(SC;P (L
0
out

= bL) j SC;P )

which is precisely the left-hand side of Equation 28 and therefore, the system satis�es AFM.

To show that AFM implies the semantic interpretation of SVC, we assume Equation 28, let

bL 2 O[L] be arbitrary, and let P1; P2 2 W be such that �L(P1; P2). We want to show that

Equation 29 holds; however, P1 and P2 may not be in the same computation tree, so we

cannot apply Equation 28 directly. We therefore de�ne an adversary A0 such that TA0
is

guaranteed to contain two points P 0
1
and P 0

2
such that P 0

1
has the same C-history as P1 and

P 0
2
has the same C-history as P2.
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Suppose A(P1) = (H1;L1) and A(P2) = (H2;L2). We de�ne A0 to be (H0;L0), where for

all bH 2 I[C � L], � 2 IC;k, and � 2 OC;k,

H0(bH j �; �) =
1

2
H1(bH j �; �) +

1

2
H2(bH j �; �)

and for all aL 2 I[C � L], � 2 IL;k, and � 2 IL;k,

L0(aL j �; �) =
1

2
L1(bH j �; �) +

1

2
L2(bH j �; �)

Since all arcs leading to P1 (resp., P2) are labelled with positive probabilities, there will be

corresponding positive-probability arcs in TA0
leading up to a point P 0

1
(resp., P 0

2
) with the

same C-history.

Note that the probabilities of reaching P1 and P2 will, in general, be di�erent than the

probabilities of reaching P 0
1
and P 0

2
, respectively. However, due to our construction of the

computation trees, from any given point, the conditional probability of receiving a particular

output at the next time step is determined solely by the system (and not by the adversary).

Therefore, we have the following.

�A(P1)(SC;P1(L
0
out

= bL) j SC;P1) = �A0
(SC;P 0

1
(L0

out
= bL) j SC;P 0

1
) (30)

�A(P2)(SC;P2(L
0
out

= bL) j SC;P2) = �A0
(SC;P 0

2
(L0

out
= bL) j SC;P 0

2
) (31)

Now, we can apply Equation 28 to the right-hand sides of Equations 30 and 31; in particular,

since P 0
1
and P 0

2
have the same L-history, both right-hand sides are equal to �A0

(SL;P 0

1
(L0

out
=

bL) j SL;P 0

1
). Therefore, Equations 28, 30, and 31 imply

�A(P1)(SC;P1(L
0
out

= bL) j SC;P1) = �A(P2)(SC;P2(L
0
out

= bL) j SC;P2)

and the proof is complete. 2

7.3 FSC versus SVC

We introduced SVC by claiming it is easier to formally verify than FSC. To see why, consider

the structure of the formulae that need to be derived in verifying FSC, viz,

2(PrL(L
0
out

= bL) = r! KL(PrL(L
0
out

= bL) = r))
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The primary di�culty with deriving such a formula is that it requires us to reason about

L's subjective probabilities (i.e., formulae of the form PrL('), where L 6= C). We expect

systems will typically be described entirely in terms of objective probabilities (i.e., where all

probability formulae are of the form PrC(')). Therefore, deriving a formula in the above form

requires us to reason about how various objective probabilities give rise to other subjective

probabilities. This is a topic we have not pursued in any depth in the present work. (In fact,

the reader may note there is only one axiom in the present logic addressing the interaction

between objective and subjective probabilities, viz, KPr.) However, our intuition is that

the relationship is closely related to the Secure Environment Assumption.

There are two special cases of verifying FSC that are worth pointing out. First, in the case

where we can derive

2(PrL(L
0
out

= bL) = r! PrC(L
0
out

= bL) = r) (32)

verifying FSC reduces to the problem of verifying SVC. That is, if (as part of verifying SVC)

we have derived

2(PrC(L
0
out

= bL) = r! KL(PrC(L
0
out

= bL) = r)) (33)

then we can use Formulae 32 and 33 in conjuction with Axiom KPr to conclude

2(PrL(L
0
out

= bL) = r! KL(PrL(L
0
out

= bL) = r))

and thus prove FSC. Of course, in such cases we can also simply verify SVC and avoid the

extra work of verifying Formula 32.

The other special case is when the system behavior can be described without any reference

to inputs. In this case, if SVC is provable, then it will be based on the truth value of the

consequent of SVC without concern for the antecedent. Because of the KPr axiom, proving

FSC (by showing the truth of the consequent) will then be exactly as easy as proving SVC.

7.4 Examples, continued

We note here that the security of the encryption box of Example 3.1 with respect to a subject

L � C is formally derivable using SVC. Recall the system speci�cation: If C = fh; lg,

I = f0; 1g, and O = f0; 1g, then, the system is speci�ed by the following formula.
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2 (PrC(l
0
out

= 0) = 0:5 ^ PrC(l
0
out

= 1) = 0:5)

Recall also that subjects are assumed to know the system description. Thus,

� = fKL2 (PrC(l
0
out

= 0) = 0:5 ^ PrC(l
0
out

= 1) = 0:5)g

The only bL 2 O[L] are 0 and 1; hence, the only antecedents for the SVC schema that are

consistent with � are PrC(L
0
out

= 0) and PrC(L
0
out

= 1). Thus, SVC with respect to L for

this system consists of the following two formulae.

2(PrC(L
0
out

= 0) = 0:5! KL(PrC(L
0
out

= 0) = 0:5))

2(PrC(L
0
out

= 1) = 0:5! KL(PrC(L
0
out

= 1) = 0:5))

Each of these is derivable from � using propositional reasoning, Modus Ponens and Necessi-

tation and, axioms K, 4, and K2. Further, since SVC is stronger than FSC, such a proof is

su�cient to show this system satis�es FSC. (In the typical case one would proceed through

SVC to prove FSC, as we have done. As noted above, however, for special cases such as this

it is equally easy to derive FSC directly.)

We also observe that for the insecure encryption box of Example 3.2 � =̀ FSC (where �

includes those formulae that describe the system as well as the assumptions about knowledge

thereof). It is obvious that the insecure encryption box fails to satisfy PNI. By the attack

described in the original example, we can easily �nd two adversaries that satisfy the Secure

Environment Assumption and agree on low behavior; yet, disagree on the probability of

certain low events. Indeed, the low environment can assign 0=1 probabilities to any output

sent by the high part of the adversary. By theorem 6.9, we thus have that � =j= FSC. And,

by soundness (theorem 5.1), it follows that � =̀ FSC.

8 Conclusions

We have given a logic for specifying and reasoning about the multilevel security of proba-

bilistic computer systems. We have established connections between information-theoretic

formulations of security and logical formulations of knowledge and probability in distributed

systems.
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To date, we have only been able to specify and verify toy systems using our logic. Our

SVC takes one small step towards practically veri�able security. However, it is unlikely that

one could ever use FSC, or even SVC, for verifying real systems since real multilevel-secure

systems (e.g., as in Karger et al. [23]) are too complex to be completely free of covert channels,

even at the speci�cation level (e.g., as in Browne [5]). Therefore, they cannot satisfy our ideal

notions of security. Nevertheless, we feel it is important to cast ideal security in a precise

logical framework. It is our hope that extensions of this work|using less ideal notions of

security allowing some limited information ow|will ultimately lead to machine checkable

proofs of security for real systems.
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